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I.  Random Concepts Review

• Concept of probability, event, random variable
(RV)

• Concept & properties of cumulative
distribution function (CDF), probability
density function (PDF)

•  Mean, moment, skewness, kurtosis
• Useful RV: uniform, Gaussian
• Random vector definition, characterization,

statistical description
• Correlation/Covariance matrices: definition &

properties
• Cross-correlation, cross-covariance matrices:

definition & properties
• Random vector linear transformation
• Central limit theorem
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I.  Random Concepts Review

Example:  Coin tossed 3 times

* sample space      S = {                                               }

�  What is a Probability:

�  What is an Event:

�  What is a Random Variable (RV):
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�  Cumulative Distribution Function (cdf):

•
•
•
•

�  CDF Properties:

�  Probability Density Function:  fx (x) =

•
•
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�  RV completely characterized by pdf

�  pdf information can be summarized by key
      aspects called statistical averages or moments

(1)  mean/average

      �  E{x} = mx = if x is discrete

                           =               if x is continuous

      �  important property of the mean  �  linearity!

E{�x + �} =

    E{g(x)} =

(3)  moments

•
•
•  variance =

•  variance property:

    �  proof:  
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�  Useful Moments:

          Skewness                Kurtosis

measures degree of        measures relative flatness or
asymmetry of distribution        peakedness of distribution
around the mean        about its mean
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�  Useful RVs:
������(1)  Uniform RV

fx(x) =

   ��mean/variance:

fx(x)

x
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  ���(1)  Normal RV

fx(x) =

fx(x)

x

Property

fx(x)

x
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�  Random Vector:

•  Group of signal observations can be modeled as
    a collection of RVs that can be grouped together
    to form a random vector.

•  Random Vector Distribution:

       Random vector completely defined by its
               joint distribution function.

•  Random Vector Density:
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�  Complex Random Vector:

•  Complex Random Variable:

•  Complex Random Variable Mean /Variance:

•  Complex Random Vector:
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where:

�  Random Vector Statistical Description:

(1) Mean Vector:

� �xm E x
� � � �
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(2) Correlation/Covariance Matrices:

•  Correlation matrix

� �
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•  Covariance matrix

� �� �� �H
n x xC E x m x m� � �
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�  Covariance/Correlation Matrices are related:
H

x x x xC R m m� �

•  Proof:

�  Correlation Matrix Properties:

  (1)  Conjugate symmetry

  (2)  Positive semi-definite

 Proofs:
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•  Eigendecomposition and PSD (positive semi-definite)

    Matrix A is said to be PSD iff   (A) � 0

     Matrix A is said to be PD (positive definite)

iff   (A) > 0

•  Example: PSD?
1 2
2 1

B
�� �

� � ��� �

�



9/21/02 EC3410.FallFY03/MPF 16

�  Cross-Correlation and Covariance Matrix:

H
xyR E xy� �� � �•

  (1)  2 random vectors are said to be uncorrelated if:

  (2)  2 random vectors are said to orthogonal if:

  (3)  when

� �� �� �
H

xy x yC E x m y m� � �

H
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0 or 0x ym m� �

•

•

•  Properties:

  (4)  if a vector has orthogonal components, then
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•Note: “correlatedness” is different from independence

•Recall: to check independence:
   if x1(   ) and x2(   ) are independent
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Consequence:  independence           uncorrelated
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�  Normal Random Vector:

  (1)  Real random vector

  (2)  Complex random vector

  (3)  Important properties of normal random vectors

�  pdf completely specified by mean
    + matrices

�  if components of x are mutually uncorrelated
    �  they are independent

�  if x is normal � y = Ax   is normal
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�  Linear Transformation for Random Vectors:

E y� � �� �

•  Mean vector

H
yR E y y� �� �� �

yC �

•  Covariance matrix

•  Correlation matrix

y Ax� �
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�Central Limit Theorem (CLT):

Describes the limiting behavior of the distribution 
function of a normalized sum of I.I.D. variables

Define: 
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As n gets large, zn ~ N(0,1)
As n gets large, sn  ~

2( , )N nm n�
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Example: Application of the CLT

Suppose orders at a restaurant are IID with a mean price
m=$8.00 and standard deviation      =$2.00.
Estimate the probability that the first 100 customers 
spend a total of more than $840.00

�


